

Superconducting Quantum Computer Hardware

Haley Cole, Ethan Hao, Theo Shaw Electrical and Computer Engineering, University of Texas at Austin, USA

11/30/23

Quantum Computing Fundamentals

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical."

- Breaking cryptography
- Machine learning
- Optimization

Qubit Circuit

Krantz et al., "A quantum engineer's guide to superconducting qubits," Applied Physics Review (2019).

Josephson Junction

JJ Fabrication

Side View

Transmon Qubit

Quantum-Limited Parametric Amplification

• GHz;

$$L(\phi) = \frac{L_J}{\cos(\phi)}$$

$$P = \epsilon_0 (\chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \dots)$$

$\hat{H}_{I} = \hbar g (\hat{a}^{2} \hat{b}^{\dagger^{2}} + \hat{a}^{\dagger^{2}} \hat{b}^{2})$	
$\hat{U}(t) = \exp[-i(\hbar g(\hat{a}^2 \hat{b}^{\dagger^2} + \hat{a}^{\dagger^2} \hat{b}^2))t/\hbar]$	
$\hat{U}(t) = \exp[-i(\hbar g(\hat{a}^2 {\beta^*}^2 + \hat{a}^{\dagger 2} \beta^2))t/\hbar]$	
$\hat{S}(\zeta) = \exp\left[-\frac{\zeta}{2}\hat{a}^{\dagger^2} + \frac{\zeta^*}{2}\hat{a}^2\right]$	
$\hat{S}^{\dagger}(\zeta)\hat{a}\hat{S}(\zeta) = \hat{a}\cosh(\zeta - e^{i\theta}\hat{a}^{\dagger}\sinh(\zeta))$	
$\hat{S}^{\dagger}(\zeta)\hat{a}^{\dagger}\hat{S}(\zeta) = \hat{a}^{\dagger}\cosh(\zeta - e^{i\theta}\hat{a}\sinh(\zeta))$	

Challenges of Superconducting Quantum Computing

Qubit Quality	Error Correction	Qubit Control	Scaling
 Qubit lifetime is in the microsecond regime Error rates are high for 	- Error correction has not yet been proven at scale	- Low-latency control on the order of nanoseconds	- One qubit requires multiple control wires and several room temperature electronics
Computation	Phase-flip error	Quantum System AMA AMA Classical Controller	

Novel qubit architectures

Siddiqi, Nature Reviews (2021).

Novel qubit architectures

Siddiqi, Nature Reviews (2021).

Quantum Error Correction

Quantum Error Correction

Quantum error correction	-	Enabled	At scale
# Physical qubits	10 – 100	100 – 1000	10 ⁴ – 10 ⁶
# Logical qubits	-	1	10 – 1000+
Logical error	10 ⁻³	10 ⁻² – 10 ⁻⁶	10 ⁻⁶ – 10 ⁻¹²

Cool it down!

< 20 mK

Dilution refrigerator

How does it work? -- a two step cooling

Step one: Traditional, ~ 3K Liquify Helium mixture

Helium: lowest boiling point substance

³He: 3.19 K ⁴He: 4.23 K

Pulse tube compressor

How does it work? -- a two step cooling

Step two: Cool down to < 20 mK Mixing ³He and ⁴He

Record: 1.75 mK Cooling power: 0.5 mW at 100 mK

NDR: 50.9 uK Laser cooling: 700 nK Lowest: 37 pK

³He and simplified DR

- D. Cousins et al., Journal of Low Temperature Physics 114, 547-570 (1999)
- D. Christian et al., PRL 127.10 (2021)
- D. Nguyen et al., J. Phys.: Conf. Ser. 400 052024 (2012)

Shankar Group

