
1/13

Stories in mathematical physics and
physical mathematics

Physics Concerto

Ainesh Sanyal

March 26, 2025



2/13

Introduction

▶ Friends from the mathematics department have always
asked me to explain concepts from quantum mechanics in a
mathematical way.

▶ I have always miserably failed to convey my point across.
Perhaps it is just my incompetence, or perhaps there is
something intrinsically confusing?

▶ Sometimes I like doing physics like mathematics and
sometimes I like doing things the other way.

▶ I will narrate to you 2 stories. The first one about quantum
mechanics being put on rigorous mathematical footing.
This one will be a little technical.

▶ The second about supersymmetric field theories and
physical mathematics.
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But what is a quantum state?

▶ We want to seek a more general definition of a state in
quantum mechanics.

▶ But what is wrong?

▶ Griffiths: A state is equivalent to a wavefunction ψ(x). My
problem:

ψ(x) = ⟨x|ψ⟩

▶ The above equation does not make sense to me. |x⟩ does
not belong to any Hilbert space.

▶ Perhaps infinite dimensional spaces are too complicated.
Let us stick to finite dimensions. Alright, Sakurai says that
a state is an object:

|ψ⟩ ∈ H ψ ∼ eiθψ.
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Contd.

▶ Alright, perhaps states are just elements of the projective
space (the space of lines).

▶ No! These are just the pure states.

▶ Where are the mixed states/ density matrices?

ρ =
∑
i

wi |ψi⟩ ⟨ψi| such that wi > 0 and
∑
i

wi = 1

▶ Conclusion: All this is non-rigorous. We need something
more general.
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Restart

▶ What do we want?

▶ Preparation procedures: Prepare a certain physical
system in a distinguished state.

▶ Registration procedures: Measure a particular
observable on this state.

▶ Mathematical description: Two sets S (States) and E
(Effects) and a map:

S × E → [0, 1] ,

such that (ρ,A) → ρ(A) ∈ [0, 1] denotes the probability.
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Huh?

▶ What is the system? We will say that the system is
characterized by an operator algebra.

▶ An operator algebra is a closed subspace of bounded
operators of some Hilbert space B(H).

▶ These are fancy words. For us, H = Cd. B(H) is just
complex d× d matrices. A is some closed subalgebra of
matrices.

▶ States:

SA = {ρ ∈ A∗ | ρ(A) ≥ 0 ∀A ∈ A and ρ(1) = 1}

▶ Effects:
EA = {A ∈ A | A ≥ 0 and A ≤ 1}
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Necessary math interlude
▶ Given the algebra A (or more generally, a vector space),

one defines the dual space of A (the space of linear
functionals):

A∗ = {ρ : A → C | ρ is linear}

▶ Any ρ ∈ A∗ can be represented by ρ̃ ∈ A by:

ρ(A) = tr(ρ̃A) ∀A ∈ A

▶ The other way around:

ρ̃kj = ρ(|j⟩ ⟨k|)

▶ Only true for finite dimensional algebras.
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Quantum mechanics

▶ The algebra A is just complex d× d matrices.

▶ Remember states were just density matrices in QM
(positive and normalised trace-class operators).

▶ What does that have to do with our definition of states?
Recall our definition of states:

SA = {ρ ∈ A∗ | ρ(A) ≥ 0 ∀A ∈ A and ρ(1) = 1}

▶ Translate the conditions on ρ as conditions on ρ̃:

ρ ≥ 0 =⇒ ρ̃ ≥ 0

ρ(I) = tr(ρ̃) = 1.

▶ Hence, ρ̃ are the density matrices!
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What about the pure states?

▶ S and E are convex (easy to see).

▶ A convex has extremal points (another theorem).

▶ The extremal points of S are the pure states.

▶ No artificial normalisation condition required. It is all built
in.

▶ Now that, we have a rigorous definition of states, we can do
a lot more! I refer you to an article1 for more.

▶ This was a story where we did physics mathematically.
What about the other way around?

1Michael Keyl. “Fundamentals of quantum information theory”. In:
Physics Reports 369.5 (Oct. 2002), pp. 431–548. issn: 0370-1573. doi:
10.1016/s0370-1573(02)00266-1. url:
http://dx.doi.org/10.1016/S0370-1573(02)00266-1.

https://doi.org/10.1016/s0370-1573(02)00266-1
http://dx.doi.org/10.1016/S0370-1573(02)00266-1
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The beginning of physical mathematics

▶ In 1994, Seiberg and Witten wrote a legendary paper2 on
answering non-perturbative questions about field theories.

▶ Perturbative questions are hard.

▶ Non-perturbative questions are even harder.

▶ Seiberg and Witten translated a question in physics to a
question in geometry.

2N. Seiberg and Edward Witten. “Electric - magnetic duality, monopole
condensation, and confinement in N=2 supersymmetric Yang-Mills theory”.
In: Nucl. Phys. B 426 (1994). [Erratum: Nucl.Phys.B 430, 485–486 (1994)],
pp. 19–52. doi: 10.1016/0550-3213(94)90124-4. arXiv: hep-th/9407087.

https://doi.org/10.1016/0550-3213(94)90124-4
https://arxiv.org/abs/hep-th/9407087
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Two slides on technical details

▶ SU(2) N = 2 field theory in 4 dimensions. The low-energy
effective action is completely described in terms of a
holomorphic function F(a)

▶ Goal: Determine F exactly (with non-perturbative
contributions). Ingredients:

1. Holomorphy of F .
2. Physics input - 1-loop contribution.
3. Electric-magnetic duality.
4. Monodromy.
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Contd.

▶ It turns out: Finding F is finding some property of the
torus:

▶ I invite you to my talk at the Junior Geometry and
Quantum Field Theory seminar next Monday if you are
interested in this.
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So what?

▶ It turns out this led to a revolution in studying
supersymmetric field theories.

▶ Led to conjectures in mathematics (Donaldson-Thomas
invariants, counting BPS states) One can go wild with
these kinds of theories. There are even non-Lagrangian
theories which we can study using these kinds of
techniques.

▶ Knot theory à la Witten.

▶ Hopefully, I have convinced you that both lines of thought
are useful. Thank you for your patience!
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