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Introduction Motivation

What is the Quantum Hall Effect?
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Thanks for listening!



Introduction Motivation

Prereq: Landau Levels

Electron in a magnetic field:
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Has energy levels: E, = (n+ %)hwc called the " Landau levels”.
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Introduction

Work in "symmetric gauge”,i.e A = %B x rand z=x+iy. Our
Hamiltonian is then,

K2 z = z 1
andau — —_ -2 ) ) ~0 2
Mo = |2 (03 ) (74 4%) + 5] )

with (non-normalized) eigenstates,

BNE
Ynm(z,Z) = 2"LM(z,2)e *o (3)
E,=(n+ %)% L™ are the Laguerre polynomials and lp = %
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Introduction Motivation

Lowest Landau Levels

The wavefunctions in the lowest Landau level are given by,

122

wn:O,m(Zaz) =z"e 413

In general these LLL wavefunctions can take the form,

|2/

Vi = Zamwnzo,m(z,f) = f(z)e *
m
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Universal Properties



Introduction

1. Incompressibility

Incompressibility : adding or removing electrons from the system costs a
finite amount of energy
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We define compressibility in the thermodynamic limit as,
ou
-1 2
K - =n"—
on

@ An incompressible state has k = 0

@ 4 is discontinuous

@ Gap in excitation spectrum , it resists changes in its density.
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3. P. Eisenstein, L. N. Pfeiffer, and K. W. West. “Compressibility of the
two-dimensional electron gas: Measurements of the zero-field exchange energy and
fractional quantum Hall gap”. In: Phys. Rev. B 50 (3 July 1994), pp. 1760-1778. DOI:
10.1103/PhysRevB.50.1760. URL:
https://link.aps.org/doi/10.1103/PhysRevB.50.1760
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Introduction

o Incompressibility implies edge currents

@ Suppose p is in a charge gap, then some du cannot change the local
current density in the bulk. Can only affect the edge states.

e Current is quantized. This is due to the following arguments: Using

the Streda formula,

on
AT (7)
The Landau level degeneracy is given by, Nyeg = % and n= yNj’\eg.
Substituting into the Streda formula gives,
on e?
ny = 875 = 1/? (8)

Anuruddh Rai (MacDonald Group) (F)QH & (F)QAH



Introduction

o Incompressibility implies edge currents

@ Suppose  is in a charge gap, then some §u cannot change the local
current density in the bulk. Can only affect the edge states.

e Current is quantized. This is due to the following arguments: Using

the Streda formula,

on
AT (7)
The Landau level degeneracy is given by, Nyeg = % and n= yNj’\eg.
Substituting into the Streda formula gives,
on e?
O'Xy = 878 = VF (8)

Anuruddh Rai (MacDonald Group) (F)QH & (F)QAH



Introduction Motivation

o Incompressibility implies edge currents

@ Suppose ji is in a charge gap, then some §u cannot change the local
current density in the bulk. Can only affect the edge states.

@ Current is quantized. This is due to the following arguments: Using

Oy = (S—B) ™)

the Streda formula,

The Landau level degeneracy is given by, Ngyeg = EBA and n= VN‘:@’.
Substituting into the Streda formula gives,
on e?

™ =98~ "h (8)
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(b)

*3The Integer Quantum Hall Effect.4(2018),Abouzaid, Aly et al.



Introduction Motivation

2. Translational Symmetry

In a LL, the traditional translation operators do not commute with H.
Instead we define " magnetic translation operators” that do,

T(X) — "Dy _ eiXH(PM"—eAP‘) (9)

Drawback: They don’t commute with each other! We get the

following,
: T(a)T(b) = @D T(b)T(a) (10)

where ¢(a, b) = 271'5—’;‘
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Introduction Motivation

In terms of the guiding center coordinate the same algebra can be written

as,
. . . .2 pA
elPX giaX — oi(p+a)X il P57 (11)

Girvin,Macdonald and Platzman used this result to derive a relation for the
single-particle densities,

[p(a), p(d")] = 2isin(13 a A q'/2)p(a + ) (12)

Insert fancy words: 'area-preserving diffeomorphisms’, "W, algebra’,
"Chern-Simons’
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3. Edge Modes

@ Bulk = gapped , dppuix = bad
e Edge = not gapped, 0pedge = good
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Metivation
Theory of edge modes: Chiral Luttinger Liquid[5][10]

Incompressibility and " non-commutative” geometry implies gapless edge
modes
The edge densities satisfy®,

k

L 1
[Pk, pi 2ﬂ_m5k,l (13)

5Zyun F. Ezawa. Quantum Hall Effects: Field Theoretical Approach and Related
Topics. 2nd. Singapore: World Scientific, 2008. 1SBN: 9789812791398. DOI:
10.1142/6739
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Introduction Motivation

Some dude [Wen] came up with a theory for the edge:

pLR(X) = Oxdr rR(X)

sgn(x — x')

[p1,R(X), pLR(X)] = —

with the following action,

dtm

S =7mhm / dtdx 20:¢0xp — vOx¢pOx® + [contact int.]
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bsiakey
4. What is Topological Order?

Doesn't break any symmetry
Is not characterized by local order parameters

Involves long-range quantum entanglement

Is robust against any local perturbations

QH liquid is a topologically ordered phase of matter
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Introduction Motivation

Integer Case: v € Z

In Quantum Mechanics we have operators (and wavefunctions).

SEddy
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Introduction Motivation

@ Fermion wavefunctions are slater determinants.
o Integer = filled landau levels.

For v =1, o
Wavefunction = H(z,- - zj)e_ o lzkl? /413
i<j
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Metivation
What about the fractional case? v = 1/m

@ Kinectic < Coloumb

@ Strong repulsion between electrons
What happens?

"Wigner Crystal
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FQH Ground State is a fluid too!

8Shocked
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bsiakey
Why crystal bad?

@ Want to preserve the topology
@ Localizing electrons requires energy

Instead try this,

|z; 2

Vim=[[(zi—z)"e > g

i<j

This one comes with,
@ Lower energy without breaking translation symm.
@ Respects circular symmetry of magnetic field
o Electrons avoid each other strongly
°

Incompressible
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9Robert Laughlin: Quantum hall enthusiast, winner of prizes



Introduction Motivation

Charged Excitations

The charged excitations are vortices. Increasing the angular momentum of
each electron by +1 we find,

N _y, 2l
Vil =]]]]z -z —2z)"e = % (19)

i=1j<k

@ Charge depletion = 'quasihole’
@ Vortex has fractional charge = e/m

@ Fractional Statistics
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Introduction Motivation

Fractional Statistics

Charged excitations are NOT Bosons, NOT Fermions — 'Anyons’
e?z’%"| ’(?bl ’Lpz>
ez"P‘ ¢2¢1>

% %)

1 Anyons
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Supplement



bsiakey
3. Laughlin's State

A breakthrough came from Laughlin in 83 1, who suggested the following

trial wavefunction for v = %H
A -,
i 2
Wy a1 = H H(zi _ Zj)25+1 a2 (20)
i=1j<i

1R B. Laughlin. “Anomalous Quantum Hall Effect: An Incompressible Quantum
Fluid with Fractionally Charged Excitations”. In: Phys. Rev. Lett. 50 (18 May 1983),
pp. 1395-1398. por: 10.1103/PhysRevLlett.50.1395. URL:
https://link.aps.org/doi/10.1103/PhysRevLlett.50.1395
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bsiakey
3. Laughlin's State

A breakthrough came from Laughlin in 83 [6], who suggested the following

. , T
trial wavefunction for v = 5=+,

Bl
\U 2S+1 Z’ 4/2
1/2s+1 =

i= 1_/<I

What'’s so good about it?
It lies in the LLL (analytic function x Gaussian)
Anti-symmetric/Obeys the Pauli principle

Particles avoid each other strongly (2s+1-fold zeros)

Is exact for a class of short-ranged interactions (Haldane
Pseudopotentials)

@ Describes an incompressible fluid
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4. Laughlin's Plasma Analogy

Let us evaluate \(W1/25+1|W1/25+1)]2 to get,

2 _ —2|n|(W1/2s+1|‘|’1/2s+1>\

z-2
:/Hdzp (2@ Sl lmg i+ h ) (21)

[(W1/2s11|V1/2641)]
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bsiakey
4. Laughlin's Plasma Analogy

Let us evaluate \<\U1/25+1|\U1/25+1>|2 to get,

2 _ g=2In [(W1/2641[V1/2s51)]

_ /Hdzp ’6<* q* Xigjnlzi-zl+§ 37 ‘Zo ) (21)
Yop

|<w1/25+1|w1/25+1>‘

which corresponds to the classical Boltzmann distribution[3] of a 2D
homogenous plasma of particles with charge g at temperature T =

1
q

k
@ Plasma equilibrium when charge neutral — W = qz orv = Nﬂ =
0

@ Adding an electron to the system requires overcoming the 2D
Coloumb — finite energy gap

@ Jp(r) is logarithmically suppressed
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Motivation
5. Excitations of FQH Ground State

o Neutral excitations (fluctuation of acoustic modes) that are
" magneto-rotons” [Girvin, Macdonald, Platzmann][4] or particle-hole
excitations

o Charged excitations that are quasiholes and quasiparticles ("anyons")
[Laughlin]
Our focus today will be on the charged quasi-hole excitations

1 quasi-hole wavefunction

2
-y Iz1”
Vercited[n] = HH(z, —z)*tle T (22)

i=1j<k
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GIT T
6. Griffiths: Chapter 9

Statement of the adiabatic theorem: "if a quantum system is
subjected to a slowly changing Hamiltonian, then it will remain in its
instantaneous eigenstate, provided there is a gap between the energy levels
of the system.”
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GIT T
6. Griffiths: Chapter 9

Statement of the adiabatic theorem: "if a quantum system is
subjected to a slowly changing Hamiltonian, then it will remain in its
instantaneous eigenstate, provided there is a gap between the energy levels
of the system.”

For a system that varies with respect to some parameter A(t) the
eigenstates |j, \) vary as,

|G, A0))(2)) = e Dj, \(t/T)) (23)
where ¢;(t) is called the "Berry phase”.
A(t/T)
(1) = A 24
w0= (24)

where A= i{j,\(t/T)|Vlj,\(t/T)) and is called the Berry connection.
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7. What you need to know about the quasi-holes

@ Region of charge depletion — has an "effective” +e/2s+1 charge

@ Is a "defect” or "vortex point” — Obstruction to gauging, i.e Berry
connection is not well defined at hole-coordinate

@ Has fractional statistics — adiabatic transport around the
hole-coordinate leads to fractional phase (mod 27)

The quasiholes must be anyons![7]
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Introduction Motivation

There are contact points(where the edges come close together) where the
edge modes can "hop”. This introduces an tunneling current in the total
current,

ve?
I = W + |It\e (25)
From this the phase accumulated by edge excitations is given by,
0 e A/B 293
— = Ngp— 2
2r e & + Nap 21 (26)

which tells us the number of bulk anyons in the system!
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Introduction Motivation

Anyon transport in the Plasma analogy

Starting from the quasi-hole excited state we can map to the plasma
picture:

wexcited [77] A Zexcited = /H dzl U(Lzilm) (27)

where U([z],n) = —2m*Y_,_;In|zi — z| —=2m Y, In|zi —n| + 5 37, ljﬂ

Our mean density is then given in the form,

B e_ﬁu([zi]:n)
pln] = % (28)
excited
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Introduction Motivation

Commutation Relations

We can canonically quantize our symmetric gauge Hamiltonian in the
following way,

h2?72
Hiandau = m (29)
where
L B, (30)
=_r+ -2
[, my] = il§ (31)
Now promoting 7 (" cyclotron coordinate”) to an operator where
n= nx\;llny and obeying,
we get,
1\ eBh
M Landau = (HTU + 5) (33)
Mme
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Introduction Motivation

Remember that in 241D our Landau levels are degenerate. The
degeneracy is due to another canonical pair, R, the "guiding center
coordinate” where,

R = lr - ﬁﬁ X (34)
—2 T RECP
[Re, Ry] = —il§ (35)
[, R] =0 (36)
[HLandaUa R] =0 (37)

Lastlyr=n+R
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Figure: Young et al, arXiv preprint arXiv:2403.19628'2

2Noah L. Samuelson et al. “Anyonic statistics and slow quasiparticle dynamics in a
graphene fractional quantum Hall interferometer”. In: To be completed (2024).
Preliminary or unpublished work if applicable



Motivation
Integer Quantum Hall Effect

@ Kubo formula:

d2‘9 8'Lbnﬁ 8’(/),,9
ny:_ 2 / <89 90, > (38)
occ. bands
@ A "topological invariant”:
_ d2‘9 5%0 3%9
€= 2 / @ < 99, | 06, > (39)

occ. bands

C is referred to as the " Chern number”, "winding number” or
TKNN?3 invariant and C € Z.

13D, J. Thouless et al. “Quantized Hall Conductance in a Two-Dimensional Periodic
Potential”. In: Phys. Rev. Lett. 49 (6 Aug. 1982), pp. 405-408. DOL:
10.1103/PhysRevLett.49.405. URL:
https://link.aps.org/doi/10.1103/PhysRevlett.49.405
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