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Introduction Motivation

What is the Quantum Hall Effect?

1

1Girvin, Steven. (2004). Introduction to the Fractional Quantum Hall Effect.
10.1007/3-7643-7393-84.
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Thanks for listening!



Introduction Motivation

Prereq: Landau Levels

Electron in a magnetic field:

HLandau =
1

2me

(
−iℏ∇+

e

c
A
)2

(1)

Has energy levels: En = (n + 1
2)ℏωc called the ”Landau levels”.
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Work in ”symmetric gauge”,i.e A = 1
2B× r and z = x + iy . Our

Hamiltonian is then,

HLandau =
ℏ2

me

[
−2

(
∂ − z̄

4l20

)(
∂̄ +

z

4l20

)
+

1

2l20

]
(2)

with (non-normalized) eigenstates,

ψn,m(z , z̄) = zmLmn (z , z̄)e
− |z|2

4l2
0 (3)

En = (n + 1
2)

h
l0
, Lmn are the Laguerre polynomials and l0 =

√
ℏ
eB
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Lowest Landau Levels

The wavefunctions in the lowest Landau level are given by,

ψn=0,m(z , z̄) = zme
− |z|2

4l2
0 (4)

In general these LLL wavefunctions can take the form,

ΨLLL =
∑
m

αmψn=0,m(z , z̄) = f (z)e
− |z|2

4l2
0 (5)
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1. Incompressibility

Incompressibility : adding or removing electrons from the system costs a
finite amount of energy
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We define compressibility in the thermodynamic limit as,

κ−1 = n2
∂µ

∂n
(6)

An incompressible state has κ = 0

µ is discontinuous

Gap in excitation spectrum , it resists changes in its density.



3

3J. P. Eisenstein, L. N. Pfeiffer, and K. W. West. “Compressibility of the
two-dimensional electron gas: Measurements of the zero-field exchange energy and
fractional quantum Hall gap”. In: Phys. Rev. B 50 (3 July 1994), pp. 1760–1778. doi:
10.1103/PhysRevB.50.1760. url:
https://link.aps.org/doi/10.1103/PhysRevB.50.1760
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Incompressibility implies edge currents

Suppose µ is in a charge gap, then some δµ cannot change the local
current density in the bulk. Can only affect the edge states.

Current is quantized. This is due to the following arguments: Using

the Streda formula,

σxy =
∂n

∂B
(7)

The Landau level degeneracy is given by, Ndeg = eBA
h and n = ν

Ndeg

A .
Substituting into the Streda formula gives,

σxy =
∂n

∂B
= ν

e2

h
(8)
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Introduction Motivation

2. Translational Symmetry

In a LL, the traditional translation operators do not commute with H.
Instead we define ”magnetic translation operators” that do,

T (x) = e ix
µDµ = e ix

µ(pµ+eAµ) (9)

Drawback: They don’t commute with each other! We get the
following,

T (a)T (b) = e iϕ(a,b)T (b)T (a) (10)

where ϕ(a, b) = 2π BA
ΦD
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In terms of the guiding center coordinate the same algebra can be written
as,

e ipX e iqX = e i(p+q)X e il
2
B

p∧q
2 (11)

Girvin,Macdonald and Platzman used this result to derive a relation for the
single-particle densities,[

ρ(q), ρ(q′)
]
= 2isin(l2B q ∧ q′/2)ρ(q + q′) (12)

Insert fancy words: ’area-preserving diffeomorphisms’, ’W∞ algebra’,
’Chern-Simons’
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3. Edge Modes

Bulk = gapped , δρbulk = bad

Edge = not gapped, δρedge = good
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Theory of edge modes: Chiral Luttinger Liquid[5][10]

Incompressibility and ”non-commutative” geometry implies gapless edge
modes
The edge densities satisfy5,

[ρ̂k , ρ̂l ] = − k

2πm
δk,l (13)

5Zyun F. Ezawa. Quantum Hall Effects: Field Theoretical Approach and Related
Topics. 2nd. Singapore: World Scientific, 2008. isbn: 9789812791398. doi:
10.1142/6739
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Some dude [Wen] came up with a theory for the edge:

ρL,R(x) = ∂xϕL,R(x) (14)

[
ϕL,R(x), ϕL,R(x

′)
]
= − i

4πm
sgn(x − x ′) (15)

with the following action,

S = πℏm
∫

dtdx 2∂tϕ∂xϕ− v∂xϕ∂xϕ+ [contact int.] (16)
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4. What is Topological Order?

Doesn’t break any symmetry

Is not characterized by local order parameters

Involves long-range quantum entanglement

Is robust against any local perturbations

QH liquid is a topologically ordered phase of matter
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Integer Case: ν ϵ Z

In Quantum Mechanics we have operators (and wavefunctions).

6

6Eddy
Anuruddh Rai (MacDonald Group) (F)QH & (F)QAH 02/04/2025 19 / 41



Introduction Motivation

Fermion wavefunctions are slater determinants.

Integer = filled landau levels.

For ν = 1,
Wavefunction =

∏
i<j

(zi − zj)e
−

∑
k |zk |2/4l2B (17)
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What about the fractional case? ν = 1/m

Kinectic < Coloumb
Strong repulsion between electrons

What happens?

7

7Wigner Crystal
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FQH Ground State is a fluid too!

8

8Shocked
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Why crystal bad?

Want to preserve the topology

Localizing electrons requires energy

Instead try this,

Ψ1/m =
∏
i<j

(zi − zj)
me

−
∑

i
|zi |

2

4l2
0 (18)

This one comes with,

Lower energy without breaking translation symm.

Respects circular symmetry of magnetic field

Electrons avoid each other strongly

Incompressible
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Charged Excitations

The charged excitations are vortices. Increasing the angular momentum of
each electron by +1 we find,

Ψ+[η] =
N∏
i=1

∏
j<k

(zi − η)(zk − zj)
me

−
∑

p
|zp |2

4l2
0 (19)

Charge depletion = ’quasihole’

Vortex has fractional charge = e/m

Fractional Statistics
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Fractional Statistics

Charged excitations are NOT Bosons, NOT Fermions → ’Anyons’

10

10Anyons
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3. Laughlin’s State

A breakthrough came from Laughlin in 83 11, who suggested the following
trial wavefunction for ν = 1

2s+1 ,

Ψ1/2s+1 =
N∏
i=1

∏
j<i

(zi − zj)
2s+1e

−
∑

i
|zi |

2

4l2
0 (20)

11R. B. Laughlin. “Anomalous Quantum Hall Effect: An Incompressible Quantum
Fluid with Fractionally Charged Excitations”. In: Phys. Rev. Lett. 50 (18 May 1983),
pp. 1395–1398. doi: 10.1103/PhysRevLett.50.1395. url:
https://link.aps.org/doi/10.1103/PhysRevLett.50.1395
Anuruddh Rai (MacDonald Group) (F)QH & (F)QAH 02/04/2025 28 / 41
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3. Laughlin’s State

A breakthrough came from Laughlin in 83 [6], who suggested the following
trial wavefunction for ν = 1

2s+1 ,

Ψ1/2s+1 =
N∏
i=1

∏
j<i

(zi − zj)
2s+1e

−
∑

i
|zi |

2

4l2
0 (20)

What’s so good about it?

It lies in the LLL (analytic function × Gaussian)

Anti-symmetric/Obeys the Pauli principle

Particles avoid each other strongly (2s+1-fold zeros)

Is exact for a class of short-ranged interactions (Haldane
Pseudopotentials)

Describes an incompressible fluid
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4. Laughlin’s Plasma Analogy

Let us evaluate |⟨Ψ1/2s+1|Ψ1/2s+1⟩|2 to get,

|⟨Ψ1/2s+1|Ψ1/2s+1⟩|2 = e−2 ln |⟨Ψ1/2s+1|Ψ1/2s+1⟩|

=

∫ ∏
p

dzpe
− 1

q

(
−2q2

∑N
i<j ln |zi−zj |+ q

2

∑N
i

|zi |
2

l2
0

)
(21)
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p
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q

(
−2q2

∑N
i<j ln |zi−zj |+ q

2

∑N
i

|zi |
2

l2
0

)
(21)

which corresponds to the classical Boltzmann distribution[3] of a 2D
homogenous plasma of particles with charge q at temperature T = q

kB
.

Plasma equilibrium when charge neutral → 1
2πl20

= qN
A or ν = N

N0
= 1

q

Adding an electron to the system requires overcoming the 2D
Coloumb → finite energy gap

δρ(r) is logarithmically suppressed
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5. Excitations of FQH Ground State

Neutral excitations (fluctuation of acoustic modes) that are
”magneto-rotons” [Girvin, Macdonald, Platzmann][4] or particle-hole
excitations

Charged excitations that are quasiholes and quasiparticles (”anyons”)
[Laughlin]

Our focus today will be on the charged quasi-hole excitations

1 quasi-hole wavefunction

Ψexcited [η] =
N∏
i=1

∏
j<k

(zi − η)(zk − zj)
2s+1e

−
∑

i
|zi |

2

4l2
0 (22)
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6. Griffiths: Chapter 9

Statement of the adiabatic theorem: ”if a quantum system is
subjected to a slowly changing Hamiltonian, then it will remain in its
instantaneous eigenstate, provided there is a gap between the energy levels
of the system.”
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6. Griffiths: Chapter 9

Statement of the adiabatic theorem: ”if a quantum system is
subjected to a slowly changing Hamiltonian, then it will remain in its
instantaneous eigenstate, provided there is a gap between the energy levels
of the system.”
For a system that varies with respect to some parameter λ(t) the
eigenstates |j , λ⟩ vary as,

|(j , λ(0))(t)⟩ = e iϕj (t)|j , λ(t/T )⟩ (23)

where ϕj(t) is called the ”Berry phase”.

ϕj(t) =

∫ λ(t/T )

λ(0)
A (24)

where A = i⟨j , λ(t/T )|∇λ|j , λ(t/T )⟩ and is called the Berry connection.
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7. What you need to know about the quasi-holes

Region of charge depletion → has an ”effective” +e/2s+1 charge

Is a ”defect” or ”vortex point” → Obstruction to gauging, i.e Berry
connection is not well defined at hole-coordinate

Has fractional statistics → adiabatic transport around the
hole-coordinate leads to fractional phase (mod 2π)

The quasiholes must be anyons![7]
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There are contact points(where the edges come close together) where the
edge modes can ”hop”. This introduces an tunneling current in the total
current,

I =
νe2

hV
+ |It |e iθ (25)

From this the phase accumulated by edge excitations is given by,

θ

2π
=

e∗

e

AIB

Φ0
+ Nqp

2θa
2π

(26)

which tells us the number of bulk anyons in the system!
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Anyon transport in the Plasma analogy

Starting from the quasi-hole excited state we can map to the plasma
picture:

Ψexcited [η] ↔ Zexcited =

∫ ∏
h

dzi e
− 1

m
U([zi ],η) (27)

where U([zi ], η) = −2m2
∑

i<j ln |zi − zj | − 2m
∑

i ln |zi − η|+ m
2

∑
i
|zi |2
4l20

Our mean density is then given in the form,

ρ̄[η] =
⟨e−βU([zi ],η)⟩

Zexcited
(28)
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Commutation Relations

We can canonically quantize our symmetric gauge Hamiltonian in the
following way,

HLandau =
ℏ2η2

2me l40
(29)

where

η =
1

2
r +

l20
ℏ
ẑ× p (30)

[ηx , ηy ] = il20 (31)

Now promoting η (”cyclotron coordinate”) to an operator where

η =
ηx+iηy√

2l0
and obeying, [

η, η†
]
= 1 (32)

we get,

HLandau =

(
η†η +

1

2

)
eBℏ
me

(33)
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Remember that in 2+1D our Landau levels are degenerate. The
degeneracy is due to another canonical pair, R, the ”guiding center
coordinate” where,

R =
1

2
r − l20

ℏ
ẑ × p (34)

[Rx ,Ry ] = −il20 (35)

[η,R] = 0 (36)

[HLandau,R] = 0 (37)

Lastly r = η + R
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Integer Quantum Hall Effect

1 Kubo formula:

σxy = −e2

ℏ
∑

occ. bands

∫
S

d2θ

(2π)2
Im

〈
∂ψnθ

∂θx

∣∣∣∣∂ψnθ

∂θy

〉
(38)

2 A ”topological invariant”:

C =
∑

occ. bands

∫
S

d2θ

(2π)2
Im

〈
∂ψnθ

∂θx

∣∣∣∣∂ψnθ

∂θy

〉
(39)

C is referred to as the ”Chern number”, ”winding number” or
TKNN13 invariant and C ∈ Z.

13D. J. Thouless et al. “Quantized Hall Conductance in a Two-Dimensional Periodic
Potential”. In: Phys. Rev. Lett. 49 (6 Aug. 1982), pp. 405–408. doi:
10.1103/PhysRevLett.49.405. url:
https://link.aps.org/doi/10.1103/PhysRevLett.49.405
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