Magneto Optic Diagnostics for Laser Wakefield Accelerators

By: Timothy Araujo

Outline

- Introduction Accelerators
- LWFA Background– 5 Slides
- Diagnostics
- Magneto Optic Effects (Faraday + Cotton Mouton Effects)
- Cotton Mouton Test Experiment
- Data
- Conclusion

Accelerators

- Goal: Accelerate ions to high energies (MeV-TeV) for use in other applications
- CERN RF LINAC has metallic chambers to 'fit' an accelerating frequency mod EM field
- Works by injecting particles & accelerating them (450GeV -> 6.5 TeV)

Cons

- Occupies a lot of space
- Lots of money to build and operate (order of billions)
- Takes 20 min to accelerate ions already at high energy to higher energy
- What if we could accelerate particles to comparable energies or complement these accelerators using a more compact and quicker method?
- Enable wider usage of accelerators for fundamental physics and industrial needs

CERN

Injection and Acceleration Streaming **Cavity**

electron

Electron lucky to have enough momentum to have v_p can be injected

 \bigcap → F_{pond} ~ ∇I

 \bigcirc = electron = proton

Injection is uncontrollable and
not independent of laser
 $E(Z - \nu_n)$ not independent of laser pulse and global plasma density

 $v_g = c$

 ω_p^2

 ω

Cont.

Diagnostic Challenge

- Diagnostics allows us to judge performance of accelerator
	- Electron beam Duration
	- Transverse emittance
	- Beam Charge
	- Energy Spread
- Diagnostics for conventional rf accelerators are not effective for bunches produced by LWFA
	- Bunches have duration $\left(\frac{\sigma_z}{2} \sim 1 10fs\right)$ and transverse beam size $(0.1 < \sigma_r < 1 \mu m)$ make them smaller than beams from km scale accelerators
	- Bunches from LWFA evolve and transient unlike conventional stationary accelerator structures
	- Accelerator performance depends on details of plasma structure and dynamics which depends on evolution of laser drive. Bubble structure governs self injection of electrons
- Diagnostics for characterizing e-beam & Plasma wakes
	- Synchrotron
		- TR, bremsstrahlung, Betatron
	- Frequency Domain Interferometry, Holography, Tomography (requires optical probe)
	- Magnetic spectrometers
	- Magneto Optics Methods (Polarimetry)

Laser Wakefield Accelerators

Magneto Optic Methods

- Purpose: To understand the structure of \vec{B} (or provide a complementary measurement of n_e) in magnetized plasma in which plasma wakes are formed
- Two sources of \vec{B} : E-beam $\vec{j}(\vec{r},t)$ and $\frac{\varepsilon_0\partial \vec{E}(\vec{r},t)}{\partial t}$ form azimuthal field according to Maxwell Eq $\nabla x \vec{B}(\vec{r},t) = \mu_0(\vec{f}(\vec{r},t) + \frac{\varepsilon_0 \partial \vec{E}(\vec{r},t)}{\partial t})$
- Can understand internal \vec{B} through change in polarization that it induces on optical probe through two magnetic optic effects: Faraday and Cotton Mouton Effects
	- Measure polarization through measurement of intensity of probe through different projections of polarizer to obtain Stokes Parameters
	- Can also measure through observed modulations in intensity from changes in polarization of probe

Magneto Optic Effects

- Faraday Effect $(\vec{k}_{probe}||\vec{B})$
	- Induces a local rotation of the linear polarized probe $\Delta \theta \propto \lambda^2 \int n_e B \cdot dl$
	- Independently measured with transverse probe
- Cotton Mouton Effect $(\vec{k}_{probe} \perp \vec{B})$
	- Probe sees a birefringent plasma in which $\Delta \phi \propto \lambda^3 \int n_e B_{\perp}^2 \cdot dl$
	- Results in local induced ellipticity of the probe
- Complicated evolution of polarization for any probing geometry in between two above cases
- CM Test Experiment: To develop polarimetric and experimental techniques and analysis methods for a MO system (Terbium Gallium Garnet crystal) that has similar MO features to a plasma

Cotton Mouton Test Experiment

Method I: Measure Intensity vs Angle of Analyzer

Blue: With B field, Orange: Without B field $B = .3T$

- Average Intensity vs Angle of Analyzer Average Pixel Intensity $0.25 +$ 0.20 Trial 0.15 1 0.10 0.05 Radians 0.5 $1.0\,$ $1.5\,$ $2.0\,$ 3.0
- Procedure: Rotate analyzer through π for both no B and with B
- Average Intensity computed over beam profile at different moments in time
- Idea: To detect modulation at max and min locations $\varpi \theta = \frac{\pi}{4} \& \theta =$ 3π $\frac{3\pi}{4}$ of analyzer, respectively
- Observed asymmetry between max and min positions
- $\Delta I \approx .015$ @ max position

- Human Error (Not going to exact same tick mark each time) (Random Error)
- Fluctuations in the Power output of He-Ne Laser ~ 2% (Noise within trial and between trials)
- Imperfections or Dust on Polarizer surface. (Could be systematic?)
- Beam profile would change between No B and with B (Crystal would move within holder due to a magnet field attraction)
	- I fixed this recently by adding mounting putty to bottom of holder

Method II: Intensity with Varying B Field

- Identify MO effect by its dependence of Intensity with B field at minimum or maximum
	- Faraday Effect: I = I₀cos²(Δθ) (At Maximum), I = I₀sin²(Δθ) (At Minimum)
	- Taylor Expanding ($\Delta \theta \ll 1$): $I = I_0(1 V^2 B^2 L^2)$ (Max), $I = I_0(1 + V^2 B^2 L^2)$ (At Min)
	- Cotton Mouton Effect: $I = I_0(1 k^2C^2B^4L^4)$ (Max) , $I = I_0(1 + k^2C^2B^4L^4)$ (Min)
	- For $|B_{max}| = .5$ T & $|B_{min}| = .2$ T, I expect Δ $I_{CM} = .0029 = .29$ % change

Conclusion
• Possible changes with setup and procedure

- - Need to try to isolate the possible errors in my experiment.
	- Can try measuring exclusively at minimum intensity since laser intensity fluctuations are uncorrelated between B and no B situations (ie errors can add)
	- Change crystal mount to allow for more ways to vary position of magnets
	- See if there is any residual birefringence produced by crystal or other optics from stress points on crystal
- Consider alternative methods for measuring state of polarization (ie measuring Stokes Parameters)
	- Rotate Polarizer to 4 angles to get measurements {S0, S1, S2} = { $P_x + P_y$, $P_x P_y$, $P_{\rm 45}-P_{\rm -45}$ } and then use QWP with polarizer for S3 measurement where S3 $^{\circ}$ $= P_R - P_L$ which together determine state of polarization of beam.
	- Ellipse Parameters can be extracted $\psi = \frac{1}{2}tan^{-1}\left(\frac{S_2}{S_1}\right)$ $\left(\frac{32}{S_1} \right)$, $E_{0x} =$ $\sqrt{0.5(S_0 + S_1)}$, $E_{ov} = \sqrt{0.5(S_0 - S_1)}$

