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Accelerators

* Goal: Accelerate ions to high energies (MeV-
TeV) for use in other applications
* CERN RF LINAC has metallic chambers to ‘fit’
an accelerating frequency mod EM field
* Works by injecting particles & accelerating
them (450GeV -> 6.5 TeV)
Cons
* Occupies a lot of space
* Lots of money to build and operate (order of
billions)
* Takes 20 min to accelerate ions already at high
energy to higher energy
* What if we could accelerate particles to
comparable energies or complement these
accelerators using a more compact and
quicker method? CERN
* Enable wider usage of accelerators for
fundamental physics and industrial needs
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Injection and Acceleration — vw=c/1-2
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Diagnostic Challenge

* Diagnostics allows us to judge performance of accelerator
* Electron beam Duration
* Transverse emittance
* Beam Charge
* Energy Spread

. Dla%NOStICS for conventional rf accelerators are not effective for bunches produced

Bunches have duration (—~1 — 10fs) and transverse beam size (.1 < g, < 1um) make them
smaller than beams from km scale accelerators

* Bunches from LWFA evolve and transient unlike conventional stationary accelerator structures
* Accelerator performance depends on details of plasma structure and dynamics which depends
on evolution of laser drive. Bubble structure governs self injection of electrons
* Diagnostics for characterizing e-beam & Plasma wakes
* Synchrotron
* TR, bremsstrahlung, Betatron
* Frequency Domain Interferometry, Holography, Tomography (requires optical probe)
* Magnetic spectrometers
* Magneto Optics Methods (Polarimetry)
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Magneto Optic Methods

Purpose: To understand the structure of B (or provide a complementary measurement of 1) in
magnetized plasma in which plasma wakes are formed

Two sources of B : E-beam7(?, t) and %ﬁr’ﬂ form azimuthal field according to Maxwell Eq

Vx B(RD = w0 + 25

Can understand internal B through change in polarization that it induces on optical probe through two magnetic
optic effects: Faraday and Cotton Mouton Effects

* Measure polarization through measurement of intensity of probe through different projections of polarizer
to obtain Stokes Parameters

* Can also measure through observed modulations in intensity from changes in polarization of probe



Magneto Optic Effects

Faraday Effect (kyropel|B) probe
* Induces a local rotation of the linear
polarized probe A8 « A* [n,B - dl
* Independently measured with
transverse probe

-

Cotton Mouton Effect (kprope L B)
* Probe sees a birefringent plasma in
which A¢ o< A3 [n,B? - dl
* Results in local induced ellipticity of
the probe

Complicated evolution of polarization for any probing geometry in
between two above cases

CM Test Experiment: To develop polarimetric and experimental
techniques and anaIKsis methods for a MO system (Terbium Gallium
Garnet crystal) that has similar MO features to a plasma




Cotton Mouton Test Experiment
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Method I: Measure Intensity vs Angle of Analyzer

Procedure: Rotate analyzer through
m for both no B and with B

Average Intensity computed over
beam profile at different moments in
time

Idea: To detect modulation at max
and min locations @ 6 = %& 6 =

37” of analyzer, respectively
Observed asymmetry between max
and min positions

Al = .015 @ max position
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(cont.)

Average Intensity vs Angle of Analyzer
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Sources of Noise:

* Human Error (Not going to exact same tick mark each time) (Random Error)

* Fluctuations in the Power output of He-Ne Laser ~ 2% (Noise within trial and between
trials)

* Imperfections or Dust on Polarizer surface. (Could be systematic?)

* Beam profile would change between No B and with B (Crystal would move within
holder due to a magnet field attraction)

* | fixed this recently by adding mounting putty to bottom of holder



Method II: Intensity with Varying B

Field

* |dentify MO effect by its dependence of Intensity with B field at minimum or maximum
* Faraday Effect: I = I,cos?(A0) (At Maximum),[ = I,sin?(A0) (At Minimum)
* Taylor Expanding (A9 « 1):1 = I,(1 —V2B?L?) (Max), I = I,(1 + V2B2L?) (At Min)
* Cotton Mouton Effect: | = [,(1 — k2C?B*L*) (Max), I = I,(1+k?*C?B*L*) (Min)
* For |Bpgx| =.5T& |Bpinl =.2T, Texpect Al = .0029 = .29% change
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Conclusion

* Possible changes with setup and procedure
* Need to try to isolate the possible errors in my experiment.

* Can try measuring exclusively at minimum intensity since laser intensity
fluctuations are uncorrelated between B and no B situations (ie errors can add)

* Change crystal mount to allow for more ways to vary position of magnets

* See if there is any residual birefringence produced by crystal or other optics from
stress points on crystal

* Consider alternative methods for measuring state of polarization (ie
measuring Stokes Parameters)
* Rotate Polarizer to 4 angles to get measurements {SO, S1, S2} ={P, + B, P, — B,
P,s — P_45} and then use QWP with polarizer for S3 measurement where S3

=Pp — P; which together determine state of polarization of beam.

* Ellipse Parameters can be extracted ) = %tan‘1 (&) yEox =

S1
VO0.5(So + 51), Eoy = 4/0.5(Sp — Sy)




