INTRODUCTION TO

GRAVITATIONAL WAVE SCIENCE

Katie Rink

Artwork by Sandbox Studio, Chicago with Corinne Mucha

Physics Concerto

Sep. 14th, 2023

OUTLINE

- Why care?
- What are they?
- How do we detect them?
- How do we analyze them?
- What does the future hold?

INTRO TO GRAVITATIONAL WAVES

A NEW ERA

MOTIVATION

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Electromagnetic Wave Windows

X-Ray

Optical

Radio

Gravitational Wave Periods

INTRO TO GRAVITATIONAL WAVES

GRAVITATIONAL RADIATION

Asymmetric acceleration in **charge** == **Electromagnetic** radiation

Asymmetric acceleration in mass == Gravitational radiation

GRAVITATIONAL RADIATION

on

GW STRAIN

 $R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = \frac{8\pi G}{c^4} T_{\mu\nu}$ $\Box h_{\mu\nu} = -16\pi T_{\mu\nu}$

GW STRAIN

Emitted GW = Second time-derivative of quadruple mass moment

 $I_{ij}^{T} = \left[\rho(\mathbf{x}) \quad r_{i}r_{j} - \frac{1}{3}r^{2}\delta_{ij} \quad d^{3}r \right]$

 $\bar{h}_{ij}(t,r) = \frac{2G}{4\pi} \ddot{I}_{ij}(t-r/c)$

POLARIZATION & HARMONIC DECOMPOSITION

$$h_{+} - ih_{\times} = \frac{1}{r} \sum_{\ell,m} \sqrt{(\ell+2)! / (\ell+2)!}$$

Credit: Gair et al., Living Rev. Relativity (2013)

 $h = h_{+} - ih_{\times}$

 $-2)! \left(\Psi_{\ell m}^{(e)} + i \Psi_{\ell m}^{(o)} \right) \gamma^{\ell m}(\theta, \phi)$

VISUALIZATIONS

Credit: LIGO/Caltech

Credit: ESA

Credit: Carl Rodriguez

2

VISUALIZATIONS

Credit: LIGO/Caltech

Credit: ESA

Credit: Carl Rodriguez

2

VISUALIZATIONS

Credit: LIGO/Caltech

Credit: ESA

Credit: Carl Rodriguez

2

BINARY BLACK HOLE WAVEFORM

Credit: M. Favata/SXS/K. Thorne

PORTFOLIO OF OBSERVATIONS

- Binary Black Holes
- Binary Neutron Stars
- Neutron Star Black Hole
- Evidence for:
 - Precession
 - Quasi-normal modes in ringdown

Credit: Giesler et al., Phys Rev. X (2019)

INTRO TO GRAVITATIONAL WAVES

HOW DO WE DETECT THEM?

MICHELSON INTERFEROMETER

$h \propto \Delta L / L$

Credit: LIGO/Caltech

HOW DO WE DETECT THEM?

MICHELSON INTERFEROMETER

$h \propto \Delta L / L$

Credit: LIGO/Caltech

LIGO NOISE CURVE

- Dominated by:
 - Seismic (low freqs)
 - Thermal (low freqs)
 - Quantum (higher freq)
- Light Squeezing
 - Uncertainty principle applied to time/freq

Credit: Wang et al., 2023

SEISMIC ISOLATION

- Mirrors suspended from seismic noise via quadruple pendulum system
- Actuators on reaction test mass
- Motion-dampening pads placed under pretty much everything

Credit: LIGO/Caltech

HOW DO WE DETECT THEM?

DETECTOR CHARACTERIZATION

Credit: Abbott et al., 2017

PULSAR TIMING ARRAYS

Measuring Stochastic Gravitational Wave Background

Credit: David J. Champion

Credit: Michael Zevin, 2016

INTRO TO GRAVITATIONAL WAVES

WAVEFORM MODELING

- Waveforms tell us what to look for Low-latency match filtering
- Models:
 - Brute force Numerical Relativity
- Estimating parameters of the binary system requires model comparison.

Approximate: Effective-One-Body, Phenomenological, Surrogate Methods

NUMERICAL RELATIVITY

Directly solving Einstein Field Eqns

Credit: Carlos Palenzuela.

Borrowed with permission from Deirdre Shoemaker

MAYAWAVES

MAYAWAVES

SURROGATE MODELING

- Build a reduced basis of training waveforms
- Empirically interpolate to reduce time nodes
- Find parametric fit across parameter space

$$h_{\mathrm{S}}(t,\theta,\phi;q,\chi) = \sum_{\ell,m} h_{\mathrm{S}}^{\ell,m}(t;q,\chi)_{-2} Y_{\ell m}(\theta,\phi)$$

Credit: Vijay Varma

 $h_{\mathrm{S}}^{\ell,m}(t;q,\chi) = A_{\mathrm{S}}^{\ell,m}(t;q,\chi) \exp\left(-\mathrm{i}\phi_{\mathrm{S}}^{\ell,m}(t;q,\chi)\right)$

SURROGATE MODELING

- Build a reduced basis of training waveforms
- Empirically interpolate to reduce time nodes
- Find parametric fit across parameter space

$$h_{\mathrm{S}}(t,\theta,\phi;q,\chi) = \sum_{\ell,m} h_{\mathrm{S}}^{\ell,m}(t;q,\chi)_{-2} Y_{\ell m}(\theta,\phi)$$

Credit: Vijay Varma

 $h_{\mathrm{S}}^{\ell,m}(t;q,\chi) = A_{\mathrm{S}}^{\ell,m}(t;q,\chi) \exp\left(-\mathrm{i}\phi_{\mathrm{S}}^{\ell,m}(t;q,\chi)\right)$

TEMPLATE BANK

HOW DO WE ANALYZE THEM?

TEMPLATE BANK

WHAT ELSE CAN WE LOOK FOR?

- Un-modelled sources
 - Burst Searches
 - Supernova
- Mass gaps
 - ▶ BHs b/w ~ $150 100,000 M_{\odot}$
 - New object b/w BHs and NSs?
 - $\sim 2.1 3 \, \mathrm{M}_{\odot}$
- **Continuous waves**
- Stochastic background

Credit: McIver and Shoemaker, 2021

PARAMETER ESTIMATION

15-dimensional parameter space

Credit: Green et al., Phys Rev D (2021)

Intrinsic	Extrinsic
Mass 1	Distance
Mass 2	Right Ascensio
Spin 1x	Declination
Spin 1y	Inclination
Spin 1z	Rotation
Spin 2x	Reference time
Spin 2y	Reference phas
Spin 2z	

SKY LOCALIZATION

- Amplitude of each polarization depends on angle at which the wavefront hits the detector
 - Two polarizations and 2-3 detectors allows us to triangulate source's location to within ~10 degrees.
- Important for rapid electromagnetic follow-up

Credit: LIGO Scientific Collaboration, ApJ (2021)

INTRO TO GRAVITATIONAL WAVES

WHAT DOES THE FUTURE HOLD?

Credit: C J Moore et al., 2015

HOW WILL WE DETECT MORE?

1000

100

10

0.1

0.01

Redshift z

Credit: A. R. Kaiser and S. T. McWilliams, 2021

WHAT DOES THE FUTURE HOLD?

ADVANCED LIGO

WHAT DOES THE FUTURE HOLD?

ADVANCED LIGO

COSMIC EXPLORER

LIGO scaled by 10

Credit: Cosmic Explorer Consortium

Credit: Cosmic Explorer Consortium

WHAT DOES THE FUTURE HOLD?

Credit: NASA/ESA

WHAT DOES THE FUTURE HOLD?

Credit: NASA/ESA

LISA

- Sources:
 - Supermassive Binary BHs
 - Extreme Mass-Ratios
 - Galactic White Dwarfs
 - Cosmic strings?
 - Early Universe phase transitions?
- Challenges:
 - Long signal duration
 - Lots of overlap
 - Global fit?

Characteristic Strain

Credit: LISA Consortium, 2017

THANK YOU!

- Why care?...
- What are they?
- Asymmetric acceleration in mass
- How do we detect them?
- Correlation b/w 2+ Interferometers
- ► How do we analyze them?
- Compare to waveform models
- What does the future hold?
- Longer, underground, and space, oh my!
- Young and exciting field rich in discovery space

THANK YOU!

- Why care?...
- What are they?
- Asymmetric acceleration in mass
- How do we detect them?
- Correlation b/w 2+ Interferometers
- ► How do we analyze them?
- Compare to waveform models
- What does the future hold?
- Longer, underground, and space, oh my!
- Young and exciting field rich in discovery space

THANK YOU!

- Why care?...
- What are they?
- Asymmetric acceleration in mass
- How do we detect them?
- Correlation b/w 2+ Interferometers
- ► How do we analyze them?
- Compare to waveform models
- What does the future hold?
- Longer, underground, and space, oh my!
- Young and exciting field rich in discovery space

Variability of recovered newSNR near glitch

Credit: Yannick Lecoeuche

Variability of recovered newSNR near glitch

Credit: Yannick Lecoeuche

Credit: Breschi et al., Classical & Quantum Gravity (2019)

