GRAVITATIONAL WAVE SCIENCE

INTRODUCTION TO

Artwork by Sandbox Studio, Chicago with Corinne Mucha

Ratie Rink **Physics Concerto** Physics Concerto Sep. 14th, 2023

OUTLINE

- ▸ Why care?
- ▸ What are they?
- ▸ How do we detect them?
- ▸ How do we analyze them?
- ▸ What does the future hold?

INTRO TO GRAVITATIONAL WAVES

MOTIVATION

A NEW ERA

Electromagnetic Waye Windows

X-Ray

Credit: Laura Nuttall

Optical

Radio

Gravitational Wave Periods

INTRO TO GRAVITATIONAL WAVES

GRAVITATIONAL RADIATION

Asymmetric acceleration in **charge** == **Electromagnetic** radiation Asymmetric acceleration in **mass** == **Gravitational** radiation

GRAVITATIONAL RADIATION

GW STRAIN

 $(R - 2\Lambda) + \mathcal{L}_{\text{M}}$ $\sqrt{-g} d^4$ $g_{\mu\nu}R =$ 8*πG c*4 *Tμν μν* = − 16*πTμν*

x

Rμν − 1 2

 \Box \bar{h}

GW STRAIN

Emitted GW = Second time-derivative of **quadruple mass moment**

 $r_i r_j -$ 1 3 r^2 δ_{ij} $\int d^3$ *r*

2*G c*4*r* ·· *Iij* (*t* − *r*/*c*)

POLARIZATION & HARMONIC DECOMPOSITION

Credit: Gair et al., Living Rev. Relativity (2013)

 $h = h_{+} - ih_{\times}$

 $+i\Psi_{\rho_m}^{(0)}$ $\begin{pmatrix} 0 \\ \ell m \end{pmatrix}_{-2}$ $Y^{\ell m}(\theta, \phi)$

$$
h_{+} - i h_{\times} = \frac{1}{r} \sum_{\ell,m} \sqrt{(\ell+2)! / (\ell-2)!} \left(\Psi_{\ell m}^{(e)} \right)
$$

Credit: SXS Collaboration

VISUALIZATIONS

Credit: Carl Rodriguez

Credit: LIGO/Caltech

Credit: ESA

VISUALIZATIONS

Credit: Carl Rodriguez

Credit: LIGO/Caltech

Credit: ESA

VISUALIZATIONS

Credit: Carl Rodriguez

Credit: LIGO/Caltech

Credit: ESA

BINARY BLACK HOLE WAVEFORM

Credit: M. Favata/SXS/K. Thorne

PORTFOLIO OF OBSERVATIONS

- ▸ Binary Black Holes
- ▸ Binary Neutron Stars
- ▸ Neutron Star Black Hole
- ▸ Evidence for:
	- ▸ Precession
	- ▸ Quasi-normal modes in ringdown

Credit: Giesler et al., Phys Rev. X (2019)

INTRO TO GRAVITATIONAL WAVES

HOW DO WE DETECT THEM?

MICHELSON INTERFEROMETER

h ∝ Δ*L* / *L*

Credit: LIGO/Caltech

HOW DO WE DETECT THEM?

MICHELSON INTERFEROMETER

h ∝ Δ*L* / *L*

Credit: LIGO/Caltech

LIGO NOISE CURVE

- ‣ Dominated by:
	- ‣ Seismic (low freqs)
	- ‣ Thermal (low freqs)
	- ‣ Quantum (higher freq)
- ‣ Light Squeezing
	- ‣ Uncertainty principle applied to time/freq

Credit: Wang et al., 2023

SEISMIC ISOLATION

- ▸ Mirrors suspended from seismic noise via quadruple pendulum system
- Actuators on reaction test mass
- ▸ Motion-dampening pads placed under pretty much everything

HOW DO WE DETECT THEM?

DETECTOR CHARACTERIZATION

Credit: Abbott et al., 2017

PULSAR TIMING ARRAYS

▸ Measuring Stochastic Gravitational Wave Background

Credit: Michael Zevin, 2016

Credit: David J. Champion

INTRO TO GRAVITATIONAL WAVES

WAVEFORM MODELING

- ▸ **Waveforms** tell us what to look for ▸ Low-latency match filtering
- ▸ Models:
	- ▸ Brute force Numerical Relativity
	-
- ▸ Estimating parameters of the binary system requires model comparison.

▸ Approximate: Effective-One-Body, Phenomenological, Surrogate Methods

NUMERICAL RELATIVITY

▸ Directly solving Einstein Field Eqns

Credit: Carlos Palenzuela.

Borrowed with permission from Deirdre Shoemaker

MAYAWAVES

MAYAWAVES

SURROGATE MODELING

$$
h_{\rm S}(t,\theta,\phi;q,\chi)=\sum_{\ell,m}h_{\rm S}^{\ell,m}(t;q,\chi)_{-2}Y_{\ell m}(\theta,\phi)
$$

- ‣ Build a reduced basis of training waveforms
- ‣ Empirically interpolate to reduce time nodes
- ‣ Find parametric fit across parameter space

Credit: Vijay Varma

 $h_S^{\ell,m}(t;q,\chi)_{-2}Y_{\ell,m}(\theta,\phi)$ $h_S^{\ell,m}(t;q,\chi) = A_S^{\ell,m}(t;q,\chi) \exp\left(-i\phi_S^{\ell,m}(t;q,\chi)\right)$

SURROGATE MODELING

$$
h_{\rm S}(t,\theta,\phi;q,\chi)=\sum_{\ell,m}h_{\rm S}^{\ell,m}(t;q,\chi)_{-2}Y_{\ell m}(\theta,\phi)
$$

- ‣ Build a reduced basis of training waveforms
- ‣ Empirically interpolate to reduce time nodes
- ‣ Find parametric fit across parameter space

Credit: Vijay Varma

 $h_S^{\ell,m}(t;q,\chi)_{-2}Y_{\ell,m}(\theta,\phi)$ $h_S^{\ell,m}(t;q,\chi) = A_S^{\ell,m}(t;q,\chi) \exp\left(-i\phi_S^{\ell,m}(t;q,\chi)\right)$

TEMPLATE BANK

HOW DO WE ANALYZE THEM?

TEMPLATE BANK

WHAT ELSE CAN WE LOOK FOR?

- ▸ **Un-modelled sources**
	- ▸ Burst Searches
		- ▸ Supernova
- ▸ **Mass gaps**
	- ▶ BHs b/w $\sim 150 100,000$ M_o
	- ▸ New object b/w BHs and NSs?
		- $\blacktriangleright \sim 2.1 3 \mathsf{M}_{\odot}$
- ▸ **Continuous waves**
- ▸ **Stochastic background**

Credit: McIver and Shoemaker, 2021

PARAMETER ESTIMATION

▸ 15-dimensional parameter space

Credit: Green et al., Phys Rev D (2021)

SKY LOCALIZATION

- ▸ Amplitude of each polarization depends on angle at which the wavefront hits the detector
	- ▸ Two polarizations and 2-3 detectors allows us to triangulate source's location to within ~10 degrees.
- Important for rapid electromagnetic follow-up

Credit: LIGO Scientific Collaboration, ApJ (2021)

INTRO TO GRAVITATIONAL WAVES

WHAT DOES THE FUTURE HOLD? 31

Credit: C J Moore et al., 2015

HOW WILL WE DETECT MORE?

▸ Einstein Telescope ▸ 10 km (3 arms) ▸ Cosmic Explorer ▸ 40 km (2 arms) ▸ LISA ▸ 2.5 million km (3 arms) ▸ Advanced LIGO

Credit: A. R. Kaiser and S. T. McWilliams, 2021

WHAT DOES THE FUTURE HOLD?

ADVANCED LIGO

WHAT DOES THE FUTURE HOLD?

ADVANCED LIGO

COSMIC EXPLORER

▸ LIGO scaled by 10

Credit: Cosmic Explorer Consortium Credit: Cosmic Explorer Consortium

WHAT DOES THE FUTURE HOLD?

Credit: NASA/ESA

WHAT DOES THE FUTURE HOLD?

Credit: NASA/ESA

LISA

- ▸ Sources:
	- ▸ Supermassive Binary BHs
	- ▸ Extreme Mass-Ratios
	- ▸ Galactic White Dwarfs
	- ▸ Cosmic strings?
	- ▸ Early Universe phase transitions?
- ▸ Challenges:
	- ▸ Long signal duration
	- ▸ Lots of overlap
	- ▸ Global fit?

Strain Characteristic

Credit: LISA Consortium, 2017

THANK YOU!

- ▸ Why care? …
- ▸ What are they?
- ▸ Asymmetric acceleration in mass
- ▸ How do we detect them?
- ▸ Correlation b/w 2+ Interferometers
- ▸ How do we analyze them?
- ▸ Compare to waveform models
- ▸ What does the future hold?
- ▸ Longer, underground, and space, oh my!
- ▸ Young and exciting field rich in discovery space

THANK YOU!

- ▸ Why care? …
- ▸ What are they?
- ▸ Asymmetric acceleration in mass
- ▸ How do we detect them?
- ▸ Correlation b/w 2+ Interferometers
- ▸ How do we analyze them?
- ▸ Compare to waveform models
- ▸ What does the future hold?
- ▸ Longer, underground, and space, oh my!
- ▸ Young and exciting field rich in discovery space

THANK YOU!

- ▸ Why care? …
- ▸ What are they?
- ▸ Asymmetric acceleration in mass
- ▸ How do we detect them?
- ▸ Correlation b/w 2+ Interferometers
- ▸ How do we analyze them?
- ▸ Compare to waveform models
- ▸ What does the future hold?
- ▸ Longer, underground, and space, oh my!
- ▸ Young and exciting field rich in discovery space

Variability of recovered newSNR near glitch

Credit: Yannick Lecoeuche

Variability of recovered newSNR near glitch

Credit: Yannick Lecoeuche

Credit: Breschi et al., Classical & Quantum Gravity (2019)